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Project Overview

® Goal, and Objectives
« Develop high-efficiency and reliable thermoelectric generators (TEGS)
« Demonstrate self-powered wireless sensor nodes (WSNs)

® Participants

* Yanliang Zhang, University of Notre Dame;
» Brian Jaques, Boise State University;

- Vivek Agarwal, Idaho National Laboratory; S
« Zhifeng Ren, University of Houston. ,

liidiid
m Schedule 01/2015 - 12/2017

Year 1 » Determine and profile WSN power consumption
» Select thermoelectric materials with optimal performance
 Study irradiation effect on thermoelectric materials

Year2 |« Develop a TEG and WSN simulator
» Design TEG of sufficient power output
« Complete analysis of irradiation effect

Year 3 | « Fabricate the TEG and test the TEG under irradiation effect
* Demonstrate the TEG-powered WSN prototype

Heat source

TEG
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Background and motivation

Hot Surface ( HeatAppned) « TEG is very compact and reliable

* Heat sources are very abundant in nuclear
power plant and fuel cycles

* The nanostructured bulk thermoelectric
materials have significantly higher
efficiency and potentially improved
radiation resistances over commercial bulk
materials.

Thermoelectric Generator (TEG)
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Thermoelectric Figure of Merit ZT

Seebeck Electrical
coefficient conductivity 140 Nanobulk Bismuth Telluride
\ 2 / 1.20
7T = o O T Nanobulk Half Heusler
- 1.00 — ,/
KE + KL 5 . 2
/ \ 50.80 i x
E SOA Bismuth Ta|luride
Electronic Lattice ® 060 pa’
thermal conductivity o \
0.40 SOA Half Heusler
5 . «
Power factor: oo
0.20
0.00 \ \
TH _ TC /1 + ZT _ 1 0 100 200 300 400 500 600 700

nmax - Temperature (°C)
= T
Tr 1+ 2T + -2
Ty

Device efficiency increases with ZT and AT

800



U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

SENTOp
5> &

L >
£ A\
< ~ -
A ) )2

& 4

O S
NATES Otg

Accomplishments

B The team achieved the following milestones for FY17

 Fabricated high-temperature and high-power-density thermoelectric
generators (TEGS)

 Developed flexible TEGs by screen printing

« Performed comprehensive study of irradiation effect on thermoelectric
materials and devices

« Demonstrated self-powered wireless sensor system
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TE Legs Unicouple

Nanobulk />
Half-Heusler

TE module

Thermal N e = !
Interfaces™ e — |
Nano Powder Heat Exchanger

Integrated TEG
System
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TEG Device Testing Results
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« Ultrahigh power density of 8.6 W/cm2 at 600 ° C and 0.75 W/cm? at 200 ° C
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Flexible Thermoelectric Generator
WENERGY Fabricated by Additive Printing
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e Developed a novel additive printing process to fabricate flexible TE materials and devices.
¢ A flexible thermoelectric device produces a power density of 16 mW/cm? with 80 °C AT.
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® lon irradiation to simulate neutron damage:
e 2.5 MeV Protons at 100 nA current and 2-10'® ions/cm? fluence
B Two approaches to characterize property changes:

Approach 1: SThM on Bulk Bar Approach 2: Thin Film
Masks to block ions Incident Property Measurement
in select regions Surface
Scan
>
Entire depth
is irradiated
Irradiated Cross-
Regions 1 Section Bulk properties compared
Scan before and after irradiation
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YENERGY Irradiation Effect on Nanostructured

Nuclear Energy Thermoelectric Materials
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14% decrease in thermal conductivity No measurable change in Seebeck coefficient
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SThM on Irradiated Cross Section
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« Maximum thermal conductivity reduction corresponds to the peak damage location;
« The average thermal conductivity reduces by 25% in the damaged region.
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Standard Measurement on
Nuclear Energy Irradiated Film
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» 25% decrease in both electrical and thermal conductivities at room temperature;
* No change in Seebeck coefficient;
* Room-temperature ZT remains unchanged.
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N-Type half-Heusler Bar Decayed Dose Rate P-Type half-Heusler Bar
Distribution (kGy/hr)

half-Heusler Device

Commercial BiTe Device

Gamma source: Co%0

13
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Irradiation

In-situ Test of TEG Devices Under Gamma
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* Average dose rate: 6.14 kGy/hour
» Total received dose: 2360 kGy

 No measureable
change in any
nanostructured bulk
half-Heusler device

e ~3.5% increase in

resistivity of commercial
BiTe module
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TEG-powered Wireless Sensor
Nuclear Energy SyStem

« Four Main Design Portions:
« Power Management
System
« DC/DC Converter
« Battery Backup/
Charger
« Embedded and Data
Storage
« Microcontroller
« USB/FTDI
Programming
* Micro SD Storage
 Wireless Transmission
« XBee Transceiver
« Sensing Inputs
 Thermocouple Input
« Amplifier/Biasing
« Additional sensor input

Sensor Board

TEG/Thin Film Input

FTDI Controller PN

v

With CTS/RTS

USB
Interface

Y

Microcontroller ~ [®| Real-Time Clock

Power Management |¢| (ATMEGA 1284P) «—» Micro SD Card
A A A A
v
Battery Backup —
(LiPo or NiMH) .| Additional Input and Output
(2¢, SPI, UART, etc.)
Transceiver - J
. Humidity Pressure
(63mW XBee) Amplifier Sensor Sensor
»  and
| . her
Biasing Micro SD Card >
Thermocouple Inputs | RTDs ] SEE0rs
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TEG-powered Wireless Sensor
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« The entire WSN consumes less than 0.4 W, which requires a TEG with <1 cm? with

200 °C heat source
« More input power is required when frequency of transmission is increased

16
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Technology Impact

B Impact on overall NE mission and the nuclear industry

« Address critical technology gaps in monitoring nuclear reactors and fuel cycle.

« Enable self-powered WSNs in multiple nuclear reactor designs as well as spent
fuel storage facilities.

» Cost savings by eliminating cable installation and maintenance.
« Significant expansion in remote monitoring of nuclear facilities.

 Significantly improve sensor power reliability and thus safety in nuclear power
plants and spent fuel storage facilities.

17
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Conclusion and Future Work

M Developed high-temperature and high-power density TEGs;

M Developed flexible TEGs for power harvesting near ambient
temperature;

B Performed comprehensive study on irradiation effect on
thermoelectric materials. The nanostructured TE materials showed
robust performances under proton and gamma irradiation;

M Built a WSN and tested the power consumption based on Zigbee
protocol, and demonstrated a self-powered WSN prototype;

B The high-temperature TEGs we developed showed promises for in-
pile power harvesting;

B Future work will focus on in-pile testing of the nanobulk TEGs.
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